- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Fekri, Faramarz (4)
-
Sethuraman, Muralikrishnna G (3)
-
Biancalan, Tom-maso (1)
-
Hütter, Jan-Christian (1)
-
Lopez, Romain (1)
-
McSweeney, Megan A (1)
-
Mohan, Rahul (1)
-
Sethuraman, Muralikrishnna (1)
-
Styczynski, Mark P (1)
-
Zhang, Hang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding causal relationships between variables is fundamental across scientific disciplines. Most causal discovery algorithms rely on two key assump- tions: (i) all variables are observed, and (ii) the underlying causal graph is acyclic. While these assumptions simplify theoretical analysis, they are often violated in real-world systems, such as biological networks. Existing methods that account for confounders either assume linearity or struggle with scalability. To address these limitations, we propose DCCD-CONF, a novel framework for differentiable learning of nonlinear cyclic causal graphs in the presence of unmeasured confounders using interventional data. Our approach alternates between optimizing the graph structure and estimating the confounder distribution by maximizing the log-likelihood of the data. Through experiments on synthetic data and real-world gene perturbation datasets, we show that DCCD-CONF outperforms state-of-the-art methods in both causal graph recovery and confounder identification. Additionally, we provide consistency guarantees for our framework, reinforcing its theoretical soundness.more » « lessFree, publicly-accessible full text available December 4, 2026
-
Sethuraman, Muralikrishnna G; McSweeney, Megan A; Styczynski, Mark P; Fekri, Faramarz (, IEEE Transactions on Molecular, Biological, and Multi-Scale Communications)Free, publicly-accessible full text available March 4, 2026
-
Sethuraman, Muralikrishnna G; Zhang, Hang; Fekri, Faramarz (, IEEE)
-
Sethuraman, Muralikrishnna; Lopez, Romain; Mohan, Rahul; Fekri, Faramarz; Biancalan, Tom-maso; Hütter, Jan-Christian (, In The 26th International Conference on Artificial Intelligence and Statistics (AISTATS))
An official website of the United States government

Full Text Available